
School of Computing
FACULTY OF ENGINEERING AND

PHYSICAL SCIENCES

Final Report

Backend development using C++

Bogdan-Alexandru Ciurea

Submitted in accordance with the requirements for the degree of
Computer Science MEng, BSc

2022/23

COMP3931 Individual Project

i

The candidate confirms that the following have been submitted.

Items Format Recipient(s) and Date
Final Report PDF file Uploaded to Minerva

(27/04/2023)
Backend GitLab Repository https://gitlab.com/

sc20bac/final-project
Sent to supervisor and asses-
sor (25/04/2023)

Frontend GitLab Repository https://gitlab.com/
sc20bac/frontend-final-
project

Sent to supervisor and asses-
sor (25/04/2023)

Deployment GitLab Reposi-
tory

https://gitlab.com/
sc20bac/deploy-final-project

Sent to supervisor and asses-
sor (25/04/2023)

The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

(Signature of Student) Bogdan-Alexandru Ciurea

c○ 2022/23 The University of Leeds and Bogdan-Alexandru Ciurea

ii

Summary

This project aims to demonstrate the benefits of using a language with better compile speeds
for backend development. The resulting school management system will be subject to multiple
non-functional requirements, including security, privacy, scalability, and reliability. The
selection of a suitable database and the development of a basic frontend are critical components
of this project.

Contents

1 Introduction and Background Research 1
1.1 Introduction . 1
1.2 Background research . 1
1.3 Existing Solutions . 2
1.4 Requirements . 3

1.4.1 Application features . 3
1.5 Chosen technologies and frameworks . 4

1.5.1 Database . 5
1.5.2 Programming Language . 5
1.5.3 API Framework . 6
1.5.4 Other Frameworks used in the backend . 6
1.5.5 Frontend . 6

2 Methods 7
2.1 Backlog and UML diagrams . 7

2.1.1 Overall architecture . 7
2.2 Database . 7

2.2.1 Database diagram . 7
2.2.2 Database objects in C++ . 8

2.3 Database integration with C++ . 9
2.4 Relationship managers . 10

2.4.1 Integration with other features . 10
2.4.2 Authentication . 11
2.4.3 General structure of a relationship manager 11
2.4.4 User manager . 12
2.4.5 Other object managers’ functions . 13

2.5 API Mapping and request information . 16
2.5.1 Integration with the rest of the backend 16
2.5.2 Security . 17
2.5.3 API Design . 17

2.6 Frontend . 18
2.7 Deployment . 18
2.8 Software development . 19

2.8.1 Work distribution . 19
2.8.2 Version control . 20

3 Results 21
3.1 Database Testing . 21
3.2 API Testing . 22

iii

CONTENTS iv

3.2.1 API speed . 22
3.3 Frontend . 23

4 Discussion 24
4.1 Conclusions . 24
4.2 Disclaimer . 25
4.3 Ideas for future work . 25

References 26

Appendices 27

A Self-appraisal 27
A.1 Critical self-evaluation . 27
A.2 Personal reflection and lessons learned . 27
A.3 Legal, social, ethical and professional issues . 27

A.3.1 Legal issues . 27
A.3.2 Social issues . 28
A.3.3 Ethical issues . 28
A.3.4 Professional issues . 28

B External Material 29

C Database classes 30
C.0.1 ResultCode . 30
C.0.2 CqlResult . 30
C.0.3 Structs and Smart pointers . 30
C.0.4 CqlClient . 30
C.0.5 Global database related functions . 32
C.0.6 Cql Manager classes . 33
C.0.7 Gluing up the program . 36

D API Endpoints 38

Chapter 1

Introduction and Background Research

1.1 Introduction

Nowadays, we are experiencing a shift in the backend development of the programming industry
from programming languages that have faster computational speeds but are harder to write to
languages that have slower computational speeds but are faster to create and also have features
such as memory safety or the safety of not preparing for a buffer overflow attack. This project
aims to prove that, although not ideal in some scenarios, it is better for a software in this field
to use better compile speeds, and, to prove this, a backend software is going to be developed in
the C++ language. Furthermore, this project is also aiming to prove that good coding practices
and code quality are essential factors in software development.

The software that this project intends to build is a fully usable school management sys-
tem/web application that is going to have multiple features such as managing users, files, courses,
or announcements or assigning grades/results for different users. Furthermore, multiple non-
functional requirements are applied to make the system more complex but also to better compare
this software with other methods of writing such as software. The non-functional requirements
are going to be the security of the system and the privacy of the data but, the most important
will be the scalability and the reliability of our system.

The last two features are going to be achieved by choosing a suitable database that is going
to fulfil the needs of having a database that is capable of storing large amounts of data, a big
number of writes/reads per minute but also has a replication factor so that, in the case that the
database is down for any reason, the data is not going to be lost.

Considering that this application is intended to be deployed and used by any person that
does not necessarily have a background in computer science, the deliverable is also going to have
a basic frontend to be used in the browser.

1.2 Background research

To achieve the goal of the project, it is important to conduct research in the fields of backend
development, security, and software development [9]. Backend development is the part of software
development that deals with the server-side logic of an application or website. It is responsible
for handling tasks such as data storage, data retrieval, and authentication. Best practices in
backend development ensure that the system is reliable, scalable, and secure.

Security is also an important aspect of this application and will involve protecting the system
from unauthorised access, data breaches, and other cyber threats [9]. This way, the system will
be secure from both internal and external threats. This includes measures such as access control,
secure coding practices as well as data encryption. In the future chapters, this report is going
to tackle multiple security measures taken into consideration for our application when choosing
frameworks or when making design decisions.

1

CHAPTER 1. INTRODUCTION AND BACKGROUND RESEARCH 2

The software development process will use the best practices in this field, these being the
design of the application, the coding standards used, testing, and ease of maintenance. This will
involve various methods and frameworks that will ensure that the software is of high quality and
that it meets the requirement of the user [9]. Using these best practices will ensure that the
software is robust, scalable, and maintainable.

API design will be another important aspect of our application that will determine how the
system will be interacting with external parties. The API design best practices [6] will ensure
that the API will be not only easy to use but also that the endpoints will be standardised so that
the future usage will be intuitive but also that the information is secured and easy to gather.

The different tables[3], and the relations between them, is a crucial design decision that will,
in the end, provide us with the best speed that we can harness from our system. In this project,
the database chosen to store our information will be Apache Cassandra, which is a non-relational
database [2] therefore, the relations between tables will be different from a traditional and more
used, relational database like PostgreSQL or MySQL.

Moreover, parallel computation is another important technique used to improve the speed of
software systems [11]. In this project, the information is going to be executed in parallel when
receiving and processing the request as this process will ensure that the biggest computationally
important task is executed in the fastest manner.

In conclusion, the project will utilise the best practices in backend development, security,
and software development [9]. The chosen technologies and frameworks will be used to ensure
the reliability, scalability, and security of the system. The API design will incorporate various
security features to ensure the security of the system [10]. Finally, the database design will be
optimised to ensure optimal performance [3], and parallel computation will be used to improve
the speed of the system [11].

1.3 Existing Solutions

Currently, there are several existing solutions for school management systems that we can have
as a source of inspiration. These solutions range from open-source software to software that is
owned by a company and that requires a business-to-business collaboration to gain access to
them. Some of the most popular open-source software solutions that can be found online are
Open-School, Fedena, and SchoolTool, all of them giving access to features like user management,
course management, attendance tracking, and grading methods. Furthermore, the proprietary
solutions are giving access to more advanced features and even live support but come at a higher
price tag. Some of the most popular solutions in this regard are Blackboard and PowerSchool,
which offer their users features such as institution analytics and customise dashboards.

It is worth noting that the previously mentioned software solutions have gone through multi-
ple versions of the final/intended product that the business has regarding its customers. Further-
more, they have a considerable amount of developers, quality assurance engineers, and dev-ops
engineers therefore, it is expected that the end product will be of good quality.

In comparison to these existing solutions, the software developed in this project will aim
to provide a lightweight, scalable, and secure solution that can also be easily deployable, thus
making it the ideal solution for institutions that do not have the budget to spend on maintaining

CHAPTER 1. INTRODUCTION AND BACKGROUND RESEARCH 3

or developing their management application.

1.4 Requirements

Before commencing the development of our school management application, it is imperative
to establish the functional and non-functional requirements that our system must meet. Some
of these requirements have been derived from the functionalities of Minerva, the university’s
management website.

The objective of our application is to facilitate the management of school operations. To
achieve this, our system will have three distinct types of users: administrators, teachers, and
students.

The following functional requirements were identified:

• Users should be able to log in and log out of their accounts.

• Admins should be able to create new user accounts.

• Admins and teachers should be able to create, modify, or delete courses.

• Admins and teachers should be able to create, modify, or delete files within a course.

• Admins and teachers should be able to create, modify, or delete announcements.

• Users should be able to create, modify, or delete questions

• Admins and teachers should be able to create, modify, or delete grades.

• Admins and teachers should be able to create, modify, or delete tags.

• Users should be able to create, modify, or delete items in a personal to-do list.

• Student references should receive an email notification when a grade is added.

The following non-functional requirements were identified:

• The system must securely store and transmit data to avoid possible leaks of information.

• The system should be fast and maintain up-to-date data to avoid data overlapping.

• The application should be easily deployable.

• The data should be stored in multiple locations to achieve redundancy and prevent data
loss.

1.4.1 Application features

Having the above functional requirements the application is going to have the next features:

1. Users will need to be able to log in and log out from the application. The users will be able
to log in using their email and password as well as the school that they are assigned to.

CHAPTER 1. INTRODUCTION AND BACKGROUND RESEARCH 4

2. In order to create an account, the admin will need to create an account for the user. The
admin will not have access to the user’s password (for security reasons), and the password
is going to be sent to the user via email.

3. The application is going to support the usage of courses. They can only be created by
admins or teachers. In order to assign other users to the course, the creator can add users
individually or, for convenience, by tags.

4. All courses will contain different folders/files in them that will be able to be downloaded
by other users. Note that the software will not support nested folders, therefore any folder
will only contain files.

5. The application is going to support the usage of announcements. They can be created by
admins or teachers and can be seen by other users if they are added to the list of users
that can see the specific announcement (via tags). The announcements can also have files
linked to them. Furthermore, other users that can view the announcement, can also ask
questions if anything is unclear.

6. The application is going to support the usage of tags. Tags can be described as groups of
people and only the teachers and the administrators will be able to assign/remove other
users to/from this list.

7. The application is going to support the usage of grades. They can be assigned to a student
by either an admin or a teacher. This feature will also be able to generate a final grade for
the student. Note that, besides the actual grade that the user received, the grade will also
have the option of "out of" but also weight. This way, some of the grades will be able to
weigh more with respect to other grades.

8. In order for the software to also help the users to manage their tasks, the to-do list feature
has also been added. It will function like a normal to-do list, creating tasks, moving them
around (to change their status), and deleting them upon completion.

Because this application can be used by multiple schools, the decision has been made to
build this application as a business-to-business service, that can be used as a subscription-based
service, for different schools. Although this feature is not fully developed as of this moment,
because it is not in the functional or non-functional requirements, the application will be able to
support multiple schools, each with its own users, courses, etc. Because the "multiple schools"
feature would mean that we would have to restructure our database, the decision was made to
implement this feature now and leave space for improvement in a later stage of this project.

1.5 Chosen technologies and frameworks

In order to achieve the requirements presented above, as well as the principles that have been
identified in the "1.2 Background research" chapter, the end software will use the next technolo-
gies.

CHAPTER 1. INTRODUCTION AND BACKGROUND RESEARCH 5

1.5.1 Database

The database chosen for this project is Apache Cassandra. The main reasons why this database
was chosen for this project are:

1. Scalability and reliability. Cassandra clusters/nodes can be connected, and they will com-
municate between them so that the data is stored on every node. This will ensure that, if
one node breaks down, the data will not be lost but will be spread around all the available
nodes.

2. Speed. Compared to other databases, Cassandra is much faster especially when we are
using it with multiple connected nodes as we can see from the article “Performance test
on Cassandra NoSQL”. The problem that we are going to run into is the slow read of
Cassandra, but this can be overcome by structuring our data in a way that allows the
database to execute the fast reads. [1]

Figure 1.1: Speed Comparison of different databases

3. How the data is stored. Cassandra is a non-relational database, and it is not stored in a
JSON format, but as a table. Although we will not be able to use some of the features
a relation database has (such as joins), Cassandra has an important feature: we can use
maps, sets, and lists.

4. Compatibility with C++. The Cassandra cpp-driver made by Datastax is an easy-to-use,
reliable, and tested driver used by multiple companies for their software.

1.5.2 Programming Language

To achieve this project’s scope, the programming language that was chosen is C++. The main
reasons are that C++ has one of the fastest compile speeds [5] but it also supports classes,

CHAPTER 1. INTRODUCTION AND BACKGROUND RESEARCH 6

compared to C.
On the other side, one of the main problems that we will have to take care of is the possibility

of a heap attack, therefore making out system less secure and vulnerable to a hacker attack. This
problem will be taken care of automatically, using the already implemented API Framework.

1.5.3 API Framework

To make the work process faster, the backend will use an already existing API framework. The
one that was chosen for the project is the Drogon C++ library as it already has implemented fea-
tures such as asynchronous programming, SSL communication, endpoint definitions that accept
parameters, JSON formatting but also file download and upload. Some of the problems with
this library are that the documentation does not go too deep into explaining some features, the
integration with the browser CORS policy is lacking in functionality and it is also hard to deploy,
as the building of the library is time-consuming but it also takes more than 1Gb of storage.

1.5.4 Other Frameworks used in the backend

In order to successfully achieve some of the functional and non-functional requirements previously
mentioned, the application will need to have some additional modules added. For this the next
libraries have been imported:

Name Link Functionality

Google tests https://github.com/
google/googletest.git

Used for testing the application.

SMTPMail https://github.com/
ihmc3jn09hk/SMTPMail-
drogon.git

Used for sending emails.

Bcrypt https://github.com/
hilch/Bcrypt.cpp.git

Used for encrypting passwords

JWT-cpp https://github.com/
Thalhammer/jwt-cpp

Used for header encryption of the request

Table 1.1: Third-party libraries used in the project

1.5.5 Frontend

For the frontend part of the application, one of the most convenient libraries to build and deploy
at the moment is Next.js. It is a library built on top of the React stack, therefore it will be able
to use any React libraries. The reasons why this library was chosen are:

• Automatic routing. The routing of the browser pages is automatically done by the library.

• Server-side rendering. Next.js increases the security of the application (compared to base
React) by automatically creating the pages in the backend rather than on the user’s browser.

• Easy deployment. Because Next.js is built by the company Vercel, they have one of the
best deployment experiences for any Next.js application. Even more, the deployment is
also optimised for better run times.

Chapter 2

Methods

2.1 Backlog and UML diagrams

2.1.1 Overall architecture

The school management application will consist of three primary components: the database
node(s), the backend server, and the frontend server. These components will be interconnected,
with communication flowing from the frontend to the backend and then to the database.

Considering that we are not able to use technologies such as GraphQL or tRPC for connecting
the frontend and the backend we will have to explicitly define the API endpoints and the data
that they are going to require or respond with. Furthermore, for the backend to use the database,
we will have to build from scratch a communication mechanism that would allow the backend
data structures to be easily adapted to our database.

Figure 2.1: System overall architecture

The next chapters are going to explain in detail how the system is going to operate and how
different classes are going to communicate in order to achieve the desired outcome.

2.2 Database

2.2.1 Database diagram

The tables will be split into two keyspaces (think of them as some kind of groups of tables). The
environment keyspace will contain the tables schools, countries, and holidays_by_country_or_school.
The rest of the tables will be stored in the schools keyspace. Unfortunately for us, the library
that we are using will not automatically create tables that will manage the many-to-many/one-to-
many/many-to-one relations (like Prisma for JavaScript or Django/Flask for Python), therefore,
we will have to manually create these tables. For convenience, the naming rules will apply the
next format: <object>s_by_<object>.

The next diagram is going to present the overall architecture of the database:

7

CHAPTER 2. METHODS 8

Figure 2.2: Database overall architecture and relationships

2.2.2 Database objects in C++

For most of the tables, there will be a C++ class that will store the correlated information from
the database. This is done to keep the information easy to access from other classes that are
used in the backend.

Database table Correlated C++ class
environment.schools SchoolObject
environment.countries CountyObject
environment.holidays_by_country_or_school HolidayObject
schools.announcements AnnouncementObject
schools.answers AnswerObject
schools.courses CourseObject
schools.files FileObject
schools.grades GradeObject
schools.questions QuestionObject
schools.student_references StudentReferenceObject
schools.tags TagObject
schools.todos TodoObject
schools.user UsersObject

Table 2.1: Correspondence between database tables and C++ classes

The classes will be simple and will have three main parts: the constructor and destructor,
a function that will return the data in a JSON format, and all the variables that the class will
have, these being all the fields that can be found in the correlated table.
The constructor will take as parameters a variable for each of the class’s variables.
As mentioned, each of these classes will have a function named to_json() that will be responsible
for returning the class’s data in a JSON format so that it can be transferred from the backend

CHAPTER 2. METHODS 9

to the frontend.
Furthermore, all the variables will be stored as public variables of the classes to keep the code
clean. Usually, in production, to get or set a variable, you would have to add two functions for
each variable of a class: a getter and a setter, but, as mentioned above, we will prioritize keeping
things simple and clear and not using this approach.

2.3 Database integration with C++

To explain exactly how the database integration was achieved, multiple classes have been created
to make the transition from the Cassandra C++ library to our setup.

With these classes we wanted to achieve the next objectives:

1. Memory management done automatically. We wanted to do this mainly because the library
that we are using for integration has some pointer variables that have to be allocated and
deallocated before and after usage and, because it is C++, we can put these variables
into a class so that it is the allocation and, more importantly, deallocation is taken care
automatically by C++.

2. Error management. The library also has an absurd amount of error codes that can be
processed from Cassandra that we will not need for this project. To solve this, the de-
fault Cassandra error codes have been merged in 8 error codes that would provide more
understanding of what whent wrong if this is the case. Furthermore, in the developed
code, there are two classes: ResultCode and CqlResult. The ResultCode class will receive
an enumerator value of the respective error code, while the CqlResult will be a class that
is returned from any database-related function and it will contain the ResultCode of the
operation as well as the error’s string from the database (if the response is OK, the string
is null).

3. Table to object mapping. As pointed out in Table 2.1 we will have multiple objects that
we want to populate with information from the database automatically. To do this, each
of the classes in the table will have a correlated class that will read the information but,
because we also have a table that maps the relations in our database, we will also have
classes for each of the small tables that map the relation.

To achieve these objectives, we have come up with the next classes:

1. CqlClient - The Cql client will act as a wrapper around the library that we are using. Its
purpose will be to execute the commands in Cassandra and to map returned results into
objects. Its function will always return a CqlResult and, if any values want to be modified,
the function will get a reference to that value.

2. CqlResult - The CqlResult will be a class that contains an error code and an error string
(if there is no error, the error string will be empty). Note that the error code will be of the
class ResultCode.

3. ResultCode - The ResultCode class will be a wrapper around the already existing error
codes provided by the Cassandra library that we are using. Considering that the number

CHAPTER 2. METHODS 10

of error codes used by the library is too big for our project and that the naming convention
is not that easy to understand, this class will merge some of the library’s error codes into
our error codes.

4. CqlManager - The CqlManager will be the most important class in the database, as every
table in the above diagram (2.2) will have one CqlManager class managing it.

The next diagram is showing how the above classes are communicating with each other:

Figure 2.3: Flow diagram for backend-database communication

For more details explaining the purpose of these classes and their functions but also any
other functions/classes that have been created for this backend-database interaction, please read
Appendix C.

2.4 Relationship managers

The purpose of the Relationship Managers section and associated classes in the backend is to
validate data before sending it to the database, check user permissions, and generate the API
response with HTTP code and JSON-formatted body. This is a critical and complex aspect of
the backend that requires detailed information checks, as any invalid information should result
in an error response. While the structure of these classes will be similar, this report will focus on
providing detailed information about the user_manager class to illustrate the program flow and
types of checks used. These classes do not use complex algorithms or programming principles
but require meticulous attention to detail.

2.4.1 Integration with other features

The relationship managers will be located in the middle of the backend application. They will use
the previously described CqlManagers and will be used by the correlated API manager that we
are going to discuss in the next chapter. Keep in mind that every relationship manager will store
pointers to multiple CqlManagers but it will be used by only one API manager. If we wanted to
display this communication process between the classes we would get the next diagram:

CHAPTER 2. METHODS 11

Figure 2.4: Flow diagram inside the backend

2.4.2 Authentication

Considering that we did not specify this in the previous chapters, this application, like any other
stateless API, is going to provide the usage of tokens. These tokens are going to be stored in the
database in the schools.tokens table and will be unique to the user. Furthermore, the database
will also help us with security in this regard as it will automatically delete any token that was
stored for more than 3 months. This information will always be important for our application as
we will not get users (when we are doing authentication) based on their uuid but based on their
token and their school id.

2.4.3 General structure of a relationship manager

Constructor

The constructor of each class will use multiple CqlManagers that have been presented in the
precious chapter. It will take as parameters multiple pointers to such classes and will store them
as private variables for further usage.

Functions

The general idea behind a function is to process the data and to check if all conditions are met,
and if they are, add, remove, get, or update data. The return value of the functions is going to
be a pair between a Drogon::HttpStatusCode (example k200OK) and a JSON value. Although
this is not necessarily the most elegant way to do this, considering that these functions are going
to be called in the API Managers to process the data but also for the final result, it would be a
good idea to return the information in a way that does not require more processing. Leaving the
return values as HttpStatusCode and JSON value would give us the ability for the API Managers
to give the information to the caller without any more parsing.
The parameters that the functions are going to get will be the school id, a token that the user

CHAPTER 2. METHODS 12

is assigned, and other information that is needed depending on the case.
To make the process of reading the logic behind the functions easier, the algorithms applied are
going to be written in a pseudo-code way. Keep in mind that the implementation in the below
described functions is shortened to keep track of the most important aspects. The error checking
is not described in the functions, neither is the returned value.

Possible returned values

The possible returned values from one of the classes’ functions can be:

Case HTTP_CODE JSON

Everything went ok for GET 200 OK The expected JSON value
Everything went ok for CREATE 201 Created The newly created object in

JSON format
Everything went ok for UPDATE
and DELETE

200 OK null

There was an error when reading the
information

500 Internal
Server Error

Specific description for the error
in an "error" field of a JSON

Fields are incorrect or given param-
eters are not found (i.e., the token)

400 Bad Request Specific description for the error
in an "error" field of a JSON

Action is not allowed because of the
user type

403 Forbidden Specific description for the error
in an "error" field of a JSON

Some parameters that are given
could not be found in the database

404 Not Found Specific description for the error
in an "error" field of a JSON

Table 2.2: HTTP codes and JSON responses for various cases

2.4.4 User manager

The user manager, as the name suggests, is going to be the class that will manage the cre-
ation/deletion/modifications of a user but will also take care of their tokens.

Functions

The functions that the user manager is going to have as public functions that are going to help
the API manager in the future are:

• create_user: It is going to create a user with the related fields given as parameters.

• get_user: It is going to return all the information about a user in JSON format.

• get_all_users: It is going to return all the users in that school.

• update_user: It is going to update a user’s fields.

• delete_user: It is going to delete a user.

• log_in: Log in.

• log_out: Log out.

CHAPTER 2. METHODS 13

When calling one of these functions, the backend is going to perform multiple checks in order
to prove that the user that sent the request, has access to that information or to perform that
action. One example can be the create_user function. It will perform the next checks before
adding the actual user to the database:

1. Check if the school exists.

2. Check if the creator token is valid.

3. Check if the creator user is an admin.

4. Check if the user’s email that we want to add is already used by other users in that school.

5. Then we can add the user to the database and respond to the API managers with 200 OK

and the password that was generated by the backend. The password is not going to be
sent back as a response but it will be used to be sent as an email to the above-specified
email.

2.4.5 Other object managers’ functions

The other functions that are going to be defined in other object managers as well as their purpose
are going to be presented in the next chapters.

Announcement Manager

This class will take care of managing the school’s announcements. This also includes managing
the tags of that announcement, managing its files, and also its answers.

The correlated functions that this class is going to have are:

• create_announcement: This is going to create the announcement in the database.

• get_announcements: This is going to get the announcements that the user has access to.

• delete_announcement: This is going to delete the announcement with the given id.

• add_tag_to_announcement: This is going to add the tag to the announcement.

• get_announcement_tags: This is going to get the tags that are attached to the announce-
ment.

• remove_tag_from_announcement: This is going to remove the tag from the announce-
ment.

• create_announcement_file: This is going to add the file to the announcement (just the
fact that the announcement has the file attached to it, not the file itself).

• delete_announcement_file: This is going to delete the file from the announcement. Not
the actual file, just the information about it.

• has_permission_to_get_file: This is going to check if the user has access to the file.

• create_answer: This is going to create the answer in the database.

CHAPTER 2. METHODS 14

• get_answers: This is going to get the answers to the specific announcement.

• delete_answer: Is going to delete the answer with the given id.

Course manager

This class will manage a school’s courses. It will also manage its users, its thumbnail, its files,
its questions, and their answers.

The correlated functions that this class is going to have are:

• create_course: Create a new course.

• get_course: Get a course’s information.

• get_all_user_courses: Get all the courses of a user.

• get_courses_users: Get all the users of a course.

• update_course: Update a course’s information.

• delete_course: Delete a course.

• set_course_thumbnail: Set a course’s thumbnail.

• get_course_thumbnail: Get a course’s thumbnail.

• delete_course_thumbnail: Delete a course’s thumbnail.

• create_course_file: Create a new file for a course.

• get_course_files: Get all the files of a course.

• update_course_files: Update a course’s file.

• delete_course_file: Delete a course’s file.

• has_permission_to_get_file: Check if a user has permission to get a file or folder.

• add_users: Add users to a course.

• remove_users: Remove users from a course.

• create_question: Create a new question.

• get_questions_by_course: Get all the questions of a course.

• delete_question: Delete a question.

• create_answer: Create a new answer.

• get_answers: Get all the answers to a question.

• delete_answer: Delete an answer.

CHAPTER 2. METHODS 15

Environment manager

This class will manage all the tables in the environment keyspace (schools, countries and holi-
days).

The correlated functions that this class is going to have are:

• create_school: Creates a school in the database.

• get_school: Gets a school from the database.

• get_all_schools: Gets all schools from the database.

• update_school: Updates a school in the database.

• delete_school: Deletes a school from the database.

• create_country: Creates a country in the database.

• get_country: Gets a country from the database.

• get_all_countries: Gets all countries from the database.

• update_country: Updates a country in the database.

• delete_country: Deletes a country from the database.

• create_holiday: Creates a holiday in the database.

• get_holidays: Gets holidays from the database.

• delete_holiday: Deletes a holiday from the database.

• delete_holidays: Deletes holidays from the database.

Tag Manager

This class will manage a school’s tags. The correlated functions that this class is going to have
are:

• create_tag: Create a new tag.

• get_tag: Get a tag by id.

• get_all_tags: Get all tags in a school.

• update_tag: Update a tag.

• delete_tag: Delete a tag.

• create_tag_user_relation: Create a relation between a tag and a user.

• get_users_by_tag: Get all users that have a relation with a tag.

• get_tags_by_user: Get all tags that have a relation with a user.

• delete_tag_user_relation: Delete a relation between a tag and a user.

CHAPTER 2. METHODS 16

Todo manager

This class will manage all of an user’s todos. The correlated functions that this class is going to
have are:

• create_todo: Create a new todo

• get_todo: Get a todo

• get_all_todos: Get all todos of a user

• update_todo: Update a todo

• delete_todo: Delete a todo

Todo manager

This class will manage all of the grades in our system. The correlated function that this class is
going to have are:

• add_grade: Created a new grade

• get_personal_grades: Will return all grades that the user making the request has.

• get_user_grades: Get all grades that a specific user has.

• get_course_grades: Get all grades that are assigned to user in a specific course

• edit_grade: Updates a grade

• delete_grade: Will delete a specific grade

2.5 API Mapping and request information

The API managers are the part of the backend that is going to interact with the frontend and
the most important part when it comes to security as it will take care of any possible attacks
that come from external sources.

2.5.1 Integration with the rest of the backend

As described before, each action (adding a user, for example) will have its function defined in
the Relationship Managers that will ask for specific information to be passed as parameters. All
of these parameters are going to be received and formatted by the API managers so that they
are valid (from a type point of view) but also all of them are present in the request. For a better
understanding of how the classes communicate, review figure 2.4.

CHAPTER 2. METHODS 17

2.5.2 Security

The security of this application is going to be implemented at 3 different points in the program:

1. SSL communication. The application, because of the Drogon library, supports SSL certifi-
cates to make our application more secure when transporting the information from a client
(normal client or our frontend) to our backend and back. Unfortunately, when running
this application on localhost, the frontend will not work as intended and will result in it,
not being able to call it; this problem only appears in the frontend, as, when running tests
with Postman, everything works as planned.

2. Encrypting password. The password encryption process will mainly take place in the
user_manager class because it will manage the password generation and its encryption
but, because we want to send an email to the user with his password, this information
is going to be returned from the user_manager to the user_api_manager for the email
to be sent. The process of generating the password is going to be simple: we will create
an 8-character long password containing characters from the Latin alphabet, digits, and
special characters; keep in mind that here, because of the pseudo-randomness of the basic
random() function that C and C++ provide we would run into security problems [12], we
will use the std::random_device object provided by C++ for better randomness of our
numbers. The next process would be to hash this newly created password; for this, we are
going to use the library in table 1.1, Bcrypt, and the output of this encryption is going
to be stored in our database. By doing these steps, the users’ passwords are going to be
stored securely in our system.

3. JWT standard. As mentioned before, the backend will expect a token (in most cases) that
would grant access to the user. To not display the user’s actual token and the school’s id
that the user is assigned to, the backend will encrypt it in the JWT standard [8]. For this
to happen, the application is going to use the JWT-cpp library. This library is going to be
used in two ways: first when the user wants to log in and second, for any other integration
with other endpoints. When logging in, the school’s id and the user token are going to
be encrypted with our public key and, when logging out, we are going to first check if the
request has the appropriate header (in our case Authentication: Bearer <token>), and
then get the encrypted values from the token’s fields.

2.5.3 API Design

The API design is going to respect the standards in the industry [10]. Because it would be hard
for us to read the information that each endpoint requires (as we have more than 70 endpoints
on our application), only the available endpoints and what they should do will be listed without
explaining exactly what information should be in them. A list of all the endpoints that our
application is going to have can be found in Appendix D.

CHAPTER 2. METHODS 18

2.6 Frontend

For the frontend to be developed, multiple libraries have been taken into consideration but, as
already mentioned in the first chapter, the Next.js library was chosen for this scope as it has
automatic routing as a default option and also has server-side rendering, therefore the security
of our application will be increased. Another option that was chosen for the used stack of the
frontend was the programming language; because we had two options JavaScript and Typescript,
the decision was made to choose the latter in this case, as it provides better syntax and type safety
of the code, therefore eliminating the possibility of any errors of this manner. The purpose of this
feature is to make the inner workings of the backend visible to the end user but also to display
the information more interactively so that the functional requirements are met. In practice, to
achieve this, the frontend will call one or more specific API endpoint(s) of the backend and will
parse the information so that it is displayed to the user but, because we also have information
that can be modified on the screen, we also want to call these endpoints when we want to do
any modifications to the displayed objects.

The development of this feature was, in principle, an easy process but, along the way of
coding this feature, the communication between the backend and the frontend server was put to
a put to hold because all of the requests that would have come from the client’s browser, where
stopped by the CORS policy [6] of the browser, therefore a countermeasure has been developed.
To send the requests from the user’s browser to the backend, the frontend server will also have
the feature of receiving requests that are then forwarded to the backend. This feature, although
not the most elegant way of resolving this, has boosted the security of the entire system as it adds
another layer of authentication needed for the user to communicate with the backend. Therefore,
the overall architecture of the communication will be represented in the next diagram:

Figure 2.5: Flow diagram of client-backend communication

2.7 Deployment

Because our application is so large, the deployment of the application is going to require a lot of
preparation before actually building and then deploying it.

As described in the previous chapters, the application is going to have 3 different parts: the
database, the backend, and the frontend, each with its different deployment procedures.

To make the deployment of the database easier, 2 different methods of deployment have
been created, each requiring docker to be installed on the local machine. The first one will
be using the run-cassandra.sh bash script, which will deploy a single container on the local
machine running the cassandra:latest image that will be downloaded from the official docker

CHAPTER 2. METHODS 19

website. The second one, and probably the one that we use to imitate the scalable and reliable
environment that we talked about in the requirements, would be to use the docker-compose.yml
file in the backend’s root folder. To run it, it would require executing docker-compose up -d

command in the terminal; this way you would get 3 nodes that communicate between them.
Please keep in mind that the setup of the database will take around 5 minutes for the nodes to
be fully functional.

To deploy the backend, you would want to first have all these dependencies installed gcc,

git, g++, cmake, make, build-essential, libuv1-dev, libjsoncpp-dev, uuid-dev, openssl,

libssl-dev, zlib1g-dev on your machine. Then, because all of the libraries are not stored lo-
cally in our repository but as git submodules, you would want to download them by executing
git submodule update –init –recursive in the terminal. After that you can continue with
the actual building of the program: mkdir build && cd build && cmake .. && make. This
way, the application is going to be built under the name of ./api_server and will be located
in the build folder of the repository. By default, the application is going to listen by default
in http://localhost:8080 or http://127.0.0.1:8080 but you can also change its address and
port if so chose, but this is not recommended. Keep in mind that the application will exit if
there is no Cassandra cluster running on port 9042. To make this process easier to deploy, the
creation of a dockerfile would be able to build a container that will contain the application and
can be downloaded from Dockerhub.

To build the frontend, the process is going to be much simpler. After cloning the repository,
just execute the basic npm commands to run a Node application: npm install && npm run dev.
This way, the frontend is going to be available on http:localhost:3000 and can be accessed from
your browser.

This being said, the deliverable will also contain a third project, containing a deployable
docker-compose file that will make the process of setting up all of the 3 different systems available
in just one executable file but, for this to be possible, the user will need to have installed git
and docker-compose on his local machine. Furthermore, because Cassandra has the option to
import/export data inside the database using CSV files, this executable will also initialise the
database with some data.

2.8 Software development

For this project to be developed multiple software development organizational methods have
been used.

2.8.1 Work distribution

The first one would be the work distribution of the project. Because, although not difficult to
understand, the project was very time-consuming to develop, making only the backend have
around 55.000 lines of code, the project was divided into multiple sprints. To be sure that
enough time is allocated to each feature and that we will not have any surprises along the way,
the project has been split into 5 sprints as the below table presents:

CHAPTER 2. METHODS 20

Sprint period Goal that the sprint wanted to achieve
1st November 2022 – 15th November 2022 Project setup and definition of features
16th November 2022 – 31st December 2022 Database Setup and Integration
1st January 2023 – 31st January 2023 Relations Managers
1st February 2023 – 28th February 2023 API Definitions
1st March 2023 – 31st March 2023 Frontend Work
1st April 2023 – 30th April 2023 Testing, bug fixing, and finalizing the

project for release

Table 2.3: Project sprint periods and goals

2.8.2 Version control

The second one would be the version control of the project. For this, the GitLab account provided
by the university was used. While branches are not mandatory for this project, only one person
was working on the code and committing to the repositories, their usage had come in handy for
the backend repository to provide an easier understanding of the commit grouping and, for the
commit naming, professional commit naming methodology has been used, each briefly explaining
what that commit is adding.

Figure 2.6: Commit history of the backend

Chapter 3

Results

The result of our application will be listed in this chapter and will tackle each of our functional
and non-functional requirements. All of the results be either tested by the backend (using the
Google tests library mentioned in chapter 1.5.3) or will be tested using external features.

3.1 Database Testing

To test the database we have used, as mentioned before, the Google tests library. Unfortunately,
the library has a drawback, that is, before each test, the backend will have to connect to the
database. This is not a problem because here, we are not testing the speeds of the application,
but rather that every feature works as intended.

By doing this, 174 tests have been created for the CqlManagers (the 24 classes mentioned
before) that will tests if the information is stored and gathered correctly.

Figure 3.1: Cql classes test results

Keep in mind that, when testing, the script will delete all information in a table so that we
do not get any not needed information. This will be a problem if you want to run the tests on
the database that you have the application information so you would have two options to keep
that data:

1. Export the information before testing.

2. Stop the containers that run the application and start a new node on the same port running
Cassandra. This way you would not get any errors and your information would not be lost.

Declaimers
A big problem that appeared during production was that, after deploying a new container,

the testing part lasted more than expected because, for the backend to connect to the database,
the connection time was around 5 seconds, when it should be around 0.5 seconds maximum.

21

CHAPTER 3. RESULTS 22

Furthermore, even some tests ran into problems when automatically tested but ran perfectly
when the tests were done manually. This problem is expected to appear because the database
did not have time to finish all the background processes or because of Docker and how it works:
because there was a stopped container on the same port, when created, the new container will
look as if that port is used (and it is) and will create a new network on that port.

Furthermore, the database also responded with "All hosts in current policy attempted and
were either unavailable or failed" when running the production software exactly because of this
new database problem.

3.2 API Testing

The API testing was done externally from the backend, using the Postman application. With it,
we stored each request in a group, each group representing one of the API Manager classes in
our backend, and each request had the required information for each action of the backend.

By doing this, all endpoints listed in tables D.1, D.2 and D.3, therefore having 11 endpoints
for the announcements, 5 endpoints for the countries, 11 endpoints for the courses, 6 endpoints
for the grades, 3 endpoints for the holidays, 5 endpoints for the schools, 9 endpoints for the tags,
5 endpoints for the todos and 6 endpoints for the users.

Because the actual endpoints, what headers they want to receive, what body they want
to receive, and what response they are going to give is going to be hard to format and time-
consuming to do for every endpoint, considering that we have 61 endpoints, all of this information
is going to display in these tests. This way, the information is going to be easier to read.

All of these tests in Postman have been exported and to import them you can build a new
project into Postman and then import them from tests/api_managers/ path of the repository.

3.2.1 API speed

Considering that this project’s most important non-functional requirement is the speed of the
API, the endpoints test is the one responsible for testing this feature. The endpoints, as pointed
out above, have been tested with Postman, therefore, because of the features provided by this
software, we are also able to see the response time of the backend. The results that have been
achieved when testing on localhost, Postman got the next responses:

• For the POST request, that would create a new entry, the backend responded in 35 to 60
milliseconds.

• For the GET request, that would return information to the requester, the backend re-
sponded in 30 to 80 milliseconds. This number can vary depending on the amount of
information. For example, when having around 100 entries of one type, the response was
around 300 milliseconds but that is a special case when larger than normal amounts of
information are being processed; but, in some cases, the first response was returned in 33
milliseconds and the next ones have been returned in 7 milliseconds. To test all of this, the
automated "Run collection" function provided by Postman has been used and, because of
this, the requests that last less than 100 milliseconds, will keep the connection open for
faster communication with the backend.

CHAPTER 3. RESULTS 23

• For the PUT request, that would update an entry’s data, the backend responds in 40 to
80 milliseconds.

• For the DELETE request, that would delete an entry in the database, the backend re-
sponses in 30 to 70 milliseconds.

Having these results, the backend can now be compared with other services of this kind.
According to Google [7], the server can be considered good if the response time is under 200
milliseconds, if the response time is bigger, you would want to achieve the 200 milliseconds
speed. Furthermore, another article [4] would add to this by categorizing the response times into
4 categories:

• Excellent, when the response time is under 100ms,

• Good, if the response time is between 100ms and 200ms,

• Should be improved, if the response time is between 200ms and 1 second, and

• Too slow, if the response time is above 1 second.

Having the above-mentioned result, the objective of the application, that being the creation
of a fast and reliable backend, has been achieved successfully.

3.3 Frontend

The design of this feature is the most important part of the aspect of the frontend therefore, the
decision was made to apply a simple but easy to understand user interface that would make the
end user understand where all the information is and how to access it.

The bellow screen shot displays the principles enumerated above, having a simple header
(that also changes depending on the type of user), main body (that will display the actual
information), and a simple footer.

Figure 3.2: Index page of the frontend

Chapter 4

Discussion

4.1 Conclusions

Although not mentioned before, the most important aspect of this project was mainly the good
management of the code. Considering that the result had more than 55.000 lines of code,
the project became, over the development process, hard to go throw but, because of the way
everything was organised and because of the steps taken before the coding period, the result
was easy to comprehend and, more importantly, manageable in the end. By using this report
as a "High-level design" of the application, this project was successfully described in an easy-
to-understand manner, describing only the bigger picture, thus further proving the point of the
usage of good coding practices and project management.

In addition to good coding practices, the coding process also emphasised testing and code
review. Code reviews have been applied constantly to ensure that the process achieved its
intended goal and also to ensure that the code adhered to the coding standards applied in the
industry. This, along the way, provided essential to the result as it ensured that the quality of
the product was met and that future maintenance is minimal.

In conclusion, the project was successful in achieving the objective, which is, the implemen-
tation of a robust backend system using C++ and good software design principles. Therefore,
by putting into action the best programming practices and design decisions, the project gave a
maintainable, scalable, and efficient backend system that met the requirements of the project.

The success of this project can be attributed to several factors such as the initial planning
and design of the general application(explained in the 2nd chapter), the usage of a robust pro-
gramming language that, although not providing memory safety, was the best option for this
project’s aims, and the focus on using practices such as encapsulation and modality, therefore
splitting the application into as many parts as possible to ensure that testing could be done
individually and the code to be as readable and easy to understand as possible.

Overall, this project is an excellent example of good software design and how C++ can be
used to create a robust and scalable system.

24

CHAPTER 4. DISCUSSION 25

4.2 Disclaimer

One of the problems that this entire application (database, backend, and frontend) has, and that
was often run into during deployment, is the communication with the database. As mentioned
before, the Cassandra database has some apparent problems when running in a Docker container,
thus making the process either run slowly or making the mutation of the tables impossible, these
modifications or addition of data were unusable. To solve this problem, the solution that was
found was to first deploy the docker container running Cassandra, then run the backend, and
after that upload the dummy data that was provided. This problem was not replicable from the
tests that have been made when deploying so this problem may or may not occur when testing
on the local environment.

4.3 Ideas for future work

From the project’s start, this school management system was implemented as a business-to-
business software that would help multiple schools to manage their data, which is also another
reason why the software had such strict requirements. Furthermore, the project has some ad-
ditional information in its database, to provide access to additional features to be added in the
future. This can be seen very clearly in the database as, in the environment keyspace, the
table holidays is not used; this was done on purpose to leave space for further development of
a personal calendar of the school that would after it’s implementation, be able to provide each
student with its lectures on a specific date.

Furthermore, the development of an automated calendar generator would also be a viable
option that would be capable of generating lectures for a specific course without overlapping
lectures. This being said, it would be a difficult task as it is a requirement for this system to
be customise therefore imposing two requirements: formatting the conditions imposed by the
admins but also making the admins understand how they work and the backend to be able to
parse and process this information.

Adding to this, the application can also support the creation of more complex formulas
for calculating the final grade because different schools might have different requests regarding
grading, thus this feature would be needed.

Another feature that would be added in the future is the ability for a global/company admin-
istrator to manage the environment and will be able to manage the system’s data. This way, the
software can be displayable on an online platform and be used as an actual business-to-business
product that would be capable of generating revenue.

Bibliography

[1] Performance test on cassandra nosql, Sep 2018.

[2] A. Cassandra. Apache cassandra documentation, Accessed: April 4, 2023.

[3] Database.Guide. The 3 types of relationships in database design, Accessed: April 4, 2023.

[4] Datadome. How to reduce server response time. Datadome Learning Center, 2022. [Online;
accessed 6 April 2023].

[5] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. BMC
Bioinformatics, 9(1):82, 2008.

[6] Google. Apigee cors policy.

[7] Google Developers. Server response time. Google Developers website, 2023. [Online; accessed
6 April 2023].

[8] IETF. JSON web token (JWT). RFC 7519, 2015. [Online; accessed 6 April 2023].

[9] R. C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and Design.
Prentice Hall, 1st edition, 2017.

[10] G. C. Platform. Design patterns - api design guide, Accessed: April 4, 2023.

[11] H. T. Takes. Parallel computing and its modern uses, Accessed: April 4, 2023.

[12] J. Viega and M. Messier. Secure Programming Cookbook for C and C++: Recipes for
Cryptography, Authentication, Input Validation & More. O’Reilly Media, Inc., 1st edition,
2003.

26

Appendix A

Self-appraisal

A.1 Critical self-evaluation

The project, as of this moment, is just half of what it can be. Although it has some very intuitive
features, it lacks other ones like timetable management and some administrative features for the
whole application (a management platform for the business administrator). Furthermore, the
frontend part of the application, although not the main point of this application, is lacking
functionality and does not use all of the endpoints opened in the backend.

The positive part of the application is that it implements multiple principles found in the
industry such as data redundancy, multiple layers of security, scalability, and how easy it is to
deploy. Furthermore, the approach that was used for this project, was able to foresee any possible
code-related issues.

A.2 Personal reflection and lessons learned

When discussing account the project in terms of code development, the project can be considered
a success as the goal of using C++ for backend development and the problems that come with
this has been achieved. The extensive amount of code, which exceeded 50, 000 lines, was managed
effectively due to thorough planning and organisation before the coding phase. The step-by-step
process of developing each feature made the coding period intuitive, with each piece falling into
place perfectly to achieve the desired outcome.

However, the challenges that appeared have taken place in two parts. The first one was
the Database. As mentioned before, the Cassandra docker container proved to be unusable
sometimes and the results were different when deploying it in a fully-fledged environment. The
other challenge that appeared came as a result of the large amounts of code generated in the end;
because of this, the explanation process proved to be extremely difficult if the report wanted to
go more in-depth on some features.

Aside from technical skills, the project also provided valuable insights into project manage-
ment and software architecture. The importance of effective project organisation was emphasised,
as well as the value of spending time in the planning phase to design the software architecture.
Overall, the project provided a wealth of learning experiences beyond just technical development.

A.3 Legal, social, ethical and professional issues

A.3.1 Legal issues

The legal issues that this application will be concerning the right to intellectual property, privacy,
and data-safety laws. Therefore, this application must not violate any patents therefore all of
the code and designs must be legally licensed but will also have to comply with the regulations
in place regarding the data protection and privacy of our users.

27

APPENDIX A. SELF-APPRAISAL 28

Furthermore, the developer will be held responsible for any loss of data or the damage that
it suffers, thus making the developer liable for such incidents.

A.3.2 Social issues

The social issues that this application will have are concerning accessibility, inclusiveness, and
user safety. Because of this, the application will have to be designed in such a way that it
allows users with different special needs or disabilities to have access and to successfully use this
application. Also, the application will not discriminate against any user regardless of gender,
race, religion, or any other biased characteristic of our users therefore, any act of discrimination
will be reported and taken care of with grates priority.

Furthermore, the user’s information must be the top priority, especially when dealing with
sensitive information (i.e. passwords or emails).

A.3.3 Ethical issues

The ethical issues that this application will have will be privacy and the non-discrimination
policy. Therefore, the application will have to respect the privacy of the users and ensure that
it is protected from unauthorised access but the school’s information (as an institution) will
also fall under this privacy and data protection policy. Furthermore, as pointed out before, the
application will not tolerate any discriminatory action against any user regardless of gender,
race, religion, or any other biased characteristic of our users, thus severe actions will be taken to
ensure that this policy is respected.

A.3.4 Professional issues

Because this application is only developed by one person, the professional issues are going to be
similar to the best coding practices pointed out in earlier chapters, mainly the code quality (the
usage of comments, standardised formatting, etc.) and code testing.

Appendix B

External Material

For this project, multiple libraries have been used in order to achieve the end result. Bellow, is
a list of all dependencies used in this project.

Name Link Functionality

Drogon https://github.com/ drogon-
framework/drogon

Used as API framework

Google tests https://github.com/
google/googletest.git

Used for testing the application.

SMTPMail https://github.com/
ihmc3jn09hk/SMTPMail-
drogon.git

Used for sending emails.

Bcrypt https://github.com/
hilch/Bcrypt.cpp.git

Used for encrypting passwords

JWT-cpp https://github.com/
Thalhammer/jwt-cpp

Used for header encryption of the request

Apache Cassandra https://cassandra.apache.org
/_/index.html

Used Database

Cassandra C++ driver https://github.com/datastax
/cpp-driver

Used for C++ to Database communication

Next.js https://nextjs.org/ Used as frontend framework
Chakra UI https://chakra-ui.com/ Used as component library for the frontend
react-dnd https://react-dnd.github.io/

react-dnd/about
Used for frontend utilities

Docker https://www.docker.com/ Used for deployment and containerisation

Table B.1: Third-party libraries used in the project

29

Appendix C

Database classes

C.0.1 ResultCode

The ResultCode will be an enumerator class that will store 9 types of different results that
an operation can return. Usually, we want to get the ResultCode::OK result but that is
not a rule. Other result codes may be INVALID_REQUEST, NOT_FOUND, CONNECTION_ERROR,

RESOURCE_ERROR, UNKNOWN_ERROR, UNAVAILABLE, TIMEOUT, NOT_APPLIED (for when we want
to see if the command was applied). All of these result codes will be transferred from a normal
Cassandra result code to our list of codes. This implementation exists because of the high num-
ber of error codes that Cassandra provides; thus, I decided to merge some of them.

C.0.2 CqlResult

The CqlResult class will be responsible for storing the result of an operation. It will have two
main fields that will be responsible for storing information: _code and _error. The _code

represents the result code of an operation and the _error represents the string of the error; if
the operation is successful, the string will be empty.
Both the _code and _error are private fields of the class, so functions code() and error() have
been implemented as getter functions for the two variables respectively.

C.0.3 Structs and Smart pointers

As pointed out in the requirements, the database library, when we call some specific functions,
will automatically allocate memory for us to use. To keep the program safe, and not leak
memory, we are given some default functions that will free this memory (cass_future_free,
cass_statement_free etc) but they are hard to keep track of, therefore I have added new types
that will take the Cassandra object and free it automatically when the variable is out of scope.
This way, the code will be safer and there will be no memory leaks.

C.0.4 CqlClient

The CqlClient will be the most important class that will communicate with the database. It is
responsible for taking the information, sending it to the database, and processing the response.

Constructor

The constructor will take the hostname and the port on which Cassandra is running. For local
development, this will be 127.0.0.1 and 9042. It will just store the data in the private fields of
the class.

30

APPENDIX C. DATABASE CLASSES 31

Figure C.1: Cql Client UML diagram of the class

connect()

This function will try to connect to the database. It will also check for if any errors occur while
connecting but will also set the log level of Cassandra to only display the errors.

execute_statement()

This function will be the one that executes the statements to the database. It will do this
asynchronously, therefore, making the code non-blocking. It will first wait for the command to
be executed, then wait for the response.
This function is intended to receive a CassStatement as a parameter. I have also given the liberty
of receiving a string as a parameter. If this is the case, the function will create a CassStatement
object with the received string and then call the normal function.

select_rows()

The purpose of this function is to select the lines of a result. This will happen nearly always as,
even if we change a field in the database, we want to see if that field was changed. Cassandra
makes this process easy because, after we execute a query, we would get an extra field than
expected, that being the was_applied.
This function will use some modern C++ features. It will receive a CassStatement that will hold
the query that we want to execute as a parameter, two functions: one that allocates the memory
for the new data and another one that will take the row as a parameter and add the data to the
previously allocated memory. Furthermore, we will also have a parameter that will indicate if
we expect a row to be returned from the database.

prepare_statement()

This function is responsible for building a statement that can be used multiple times. This is
done for security reasons to prevent breaches such as an SQL injection attack.

APPENDIX C. DATABASE CLASSES 32

C.0.5 Global database related functions

get_cql_result()

Will return a CqlResult class that will contain the result of the operation executed on the Cas-
sandra cluster. Note that if the result of the operation is not successful (aka. ResultCode::OK),
the function will also read try and get the error message.

get_result_code()

Will change the error codes of a normal enumerator CassError into our enumerator ResultCode.
To change the default Cassandra error messages into our custom ones, we will use the next rules:

CassError ResultCode
CASS_OK OK
CASS_ERROR_SERVER_INVALID_QUERY INVALID_REQUEST
CASS_ERROR_LIB_NO_HOSTS_AVAILABLE CONNECTION_ERROR
CASS_ERROR_SERVER_READ_FAILURE RESOURCE_ERROR
CASS_ERROR_SERVER_FUNCTION_FAILURE RESOURCE_ERROR
CASS_ERROR_SERVER_WRITE_FAILURE RESOURCE_ERROR
CASS_ERROR_SERVER_UNAVAILABLE UNAVAILABLE
CASS_ERROR_SERVER_WRITE_TIMEOUT TIMEOUT
CASS_ERROR_SERVER_READ_TIMEOUT TIMEOUT
CASS_ERROR_LIB_REQUEST_TIMED_OUT TIMEOUT
Anything else UNKNOWN_ERROR

Table C.1: Correspondence between database tables and C++ classes

was_applied()

Will check if a command was applied. In practice, the only time that we are not going to use this
function is when reading some variables from the database and when updating/deleting an entry
from the database and we did not provide all the primary keys and the clustering keys that the
table has. The function will try looking for the [applied] column of a row. After that, it will
return the result. If the [applied] field is false, we will return a ResultCode: :NOT_APPLIED.

Value getters

When reading from Cassandra, the data is going to come separated into multiple columns, each
with a specific data type (like integer, string, or array). To read them, 7 different functions have
been created to read the types of data that we are using in our data types. Each one of them
will take as parameters a CassRow pointer, the column index (in which the data is stored), and
a reference to the variable that we want to read. The function will try to read get the column
at the specified index from the given row and then read the variable from that column.
To read the variable that we want, we will use the cass_value_get_<field> function provided
by the Cassandra library.
The functions that we will use will be:

APPENDIX C. DATABASE CLASSES 33

Function name Function scope
get_bool_value() Will read a bool value from a column.
get_int_value() Will read an int value from a column.
get_long_value() Will read a long value from a column. Usually used for reading

time_t variables. Note that Cassandra also stores the milliseconds
of a time, therefore we will need to also divide the result by 1000
after we read it.

get_float_value() Will read a float value from a column.
get_text_value() Will read a string value from a column.
get_uuid_value() Will read an uuid value from a column.
get_array_uuids_value() Will read a vector of uuids from a column that contains a set of

uuids (in the database).

Table C.2: Function scope for reading values from a column

C.0.6 Cql Manager classes

The main interaction with the database is going to be done through these classes. Each table
in the database is going to have a correlated Cql Manager class. Considering that we will have
a class for each table (23 to be exact), it would be inappropriate to explain in detail what each
class and its functions will do, therefore this document will describe the structure of a general
class and only go into detail when it is the case.
Note that the project splits the tables into two categories: object tables (like the schools.users
table) and the relationship tables (like the schools.users_by_tag table). Some of the imple-
mentations will be different from one type of table to the other but they will all have the same
code structure and apply the same principles.

To get a first impression of the class that we are going to describe in the next chapters, the
below-displayed diagram represents it.

Figure C.2: Cql Manager UML diagram of the class template

APPENDIX C. DATABASE CLASSES 34

Naming conventions

As mentioned before, each table in our database will have a correlated C++ class that will take
care of that table. The naming of them will be standardized and will use the name of the table
concatenated with _cql_manager (example: answers_cql_manager).

Private variables

Each class will store a pointer to the CqlClient that we have created before the creation of the
class.
Each class will contain multiple CassPreparedPtr objects that we will use when creating and exe-
cuting a statement. They will usually be 4 different prepared statement: _prepared_insert_object,
_prepared_get_object, _prepared_update_object, and _prepared_delete_object. Some
classes, such as the one that manages the grades table, will contain more prepared statements
to manage more commands, for example getting a table’s data based on a field that is not a
primary key or deleting an entry based on fewer primary keys (can be seen in any Cql manager
for a relation).
Furthermore, each class will contain multiple constant char pointers that will store the actual
command that we will execute. They will usually be CREATE_SCHOOL_KEYSPACE, CREATE_OBJECT_TABLE,

INSERT_OBJECT, SELECT_OBJECT, UPDATE_OBJECT, DELETE_OBJECT. Again, some classes will
contain more than 6 commands.

Constructor and destructor

The constructor will take as a parameter a pointer to the CqlClient and will be stored locally
until we destruct the class. The destructor will be empty, considering that we don’t have to
deallocate memory.

configure ()

This function will take as parameters a bool value that will represent whether we want to also
create the table and keyspace if they don’t exist or not. If they exist and we execute the
command, it is no problem because we create them with the additional Cassandra statement “IF
NOT EXISTS”, thus no errors will occur. The function will also initialize the prepared statement
using the init_prepared_statment function described below.

init_prepare_statements ()

This function will initialize the prepared statements with the char pointers that we have men-
tioned previously. As we can see, each CassPreparedPtr will have a string as its command,
excepting the CREATE_SCHOOL_KEYSPACE and CREATE_OBJECT_TABLE strings.

init_schema ()

The function will execute the CREATE_SCHOOL_KEYSPACE and CREATE_OBJECT_TABLE commands.
This will result in the creation of the related keyspace and the related table.

APPENDIX C. DATABASE CLASSES 35

The function will return ResultCode::OK or, if the execution fails, will return the correlated
error code.

create_object ()

The create object function will take a reference to an object as a parameter if it manages an
object or the school’s id plus two uuids if it manages a relationship between two other objects. It
will, in a try–catch block, try to bind the prepared statement to a normal Cassandra statement
and then, assign each of the object’s variables to a field in the statement. After that, the function
will execute the statement and check if the command was applied. After that, the result will be
returned.
If the function crashes during execution, an error message will be returned, alongside

ResultCode::UNKNOWN_ERROR.
If the command was not applied, the function will return ResultCode::NOT_APPLIED.
If the execution was successful, the function will return ResultCode::OK.

get_object()

The function will create a vector of objects that will try and read from the database. In this
function, two other lambda functions will be defined, one that will allocate memory and another
one that will copy the read information from the Cassandra result and put it into the previous
vector. Note that the function map_row_to_object will be used to map the Cassandra row to the
actual object; this will be used only when working with objects tables and not with relationships
tables, they will just read a CassUuid value from the row.
After we use the select_rows function from the CqlClient class, the function will check whether
we get a ResultCode::OK or not. If not, return the error code.
If we are working with the relationship tables, the function will return the result of the operations
now.
If not, and we are working with a class’s table, we would first check if we only have one entry in
the vector and then return the first object of the vector.

update_object ()

This function will be used only for the object’s tables. It will take as a parameter all of the
object’s fields and try to execute a statement with these fields.
It will, in a try–catch block, try to bind the prepared statement to a normal Cassandra statement
and then, assign each of the object’s variables to a field in the statement. After that, the function
will execute the statement and check if the command was applied. After that, the result will be
returned.
If the function crashes during execution, an error message will be returned, alongside

ResultCode::UNKNOWN_ERROR.
If the command was not applied, the function will return ResultCode::NOT_APPLIED.
If the execution was successful, the function will return ResultCode::OK.

APPENDIX C. DATABASE CLASSES 36

delete_object ()

This function will usually take all the primary and clustering keys of an object as parameters
and try to map them to a statement to delete some fields in the database. It will, in a try–catch
block, try to bind the prepared statement to a normal Cassandra statement and then, assign
each of the object’s variables to a field in the statement. After that, the function will execute
the statement and check if the command was applied. After that, the result will be returned.
Checking whether a command was applied is not a rule; in some cases (for example: when we
delete a field and do not provide all the primary keys and clustering keys) we will not be able to
execute commands that have the Cassandra “IF EXISTS” condition, therefore we will not get the
[applied] field in the response. This is a problem considering that we will not be able to check if
we deleted some fields, but these problems will be assessed in the testing part.
If the function crashes during execution, an error message will be returned, alongside

ResultCode::UNKNOWN_ERROR.
If the command was not applied, the function will return ResultCode::NOT_APPLIED.
If the execution was successful, the function will return ResultCode::OK.

map_row_to_object ()

This function will be used when trying to map a Cassandra row to an object. It will take as
parameters the Cassandra row and a reference to the object which values we want to modify. To
map the Cassandra columns of the row to classic variables we will use the value-getter functions
explained previously.
The function will return a ResultCode::OK if the operations went as planned, or the related
ResultCode of the error if we get an error.

C.0.7 Gluing up the program

To better explain how the above code will function, three diagrams have been made to display
the process of getting data from the DB, updating/deleting data from the DB, and also the
process of initializing one of the Cql Manager’s statements.

APPENDIX C. DATABASE CLASSES 37

Figure C.3: Flow diagram for reading data

Figure C.4: Flow diagram for deleting/updating data

Figure C.5: Flow diagram for initializing statements

Appendix D

API Endpoints

Method Endpoint Description
POST /api/announcements Creates a new announcement
GET /api/announcements/announcement-

id
Gets the announcement with the given id

DELETE /api/announcements/announcement-
id

Deletes the announcement with the given
id

POST /api/announcements/announcement-
id/files

Creates a new file for the announcement

GET /api/announcements/announcement-
id/files?file_id=file-id

Gets the file with the given id assigned to
the announcement

DELETE /api/announcements/announcement-
id/files?file_id=file-id

Deletes the file with the given id assigned
to the announcement

POST /api/announcements/announcement-
id/tags

Adds the given tags to the announcement

GET /api/announcements/announcement-
id/tags

Gets the tags assigned to the announce-
ment

DELETE /api/announcements/announcement-
id/tags

Removes the given tags from the an-
nouncement

POST /api/announcements/announcement-
id/answers

Creates a new answer for the announce-
ment

DELETE /api/announcements/announcement-
id/answers?answer_id=answer-id

Deletes the answer with the given id as-
signed to the announcement

POST /api/grades Creates a new grade for a specific user
GET /api/grades Will return a list of grades that are as-

signed TO the user that sent the request
GET /api/user/user_id/grades Will return the grades assigned TO the

user with the specified user id
GET /api/course/course_id/grades Will return a list of grades that are as-

signed to this course
PUT /api/grades/grade_id Will change a grades data
DELETE /api/grades/grade_id Will delete a grade

Table D.1: API endpoints part 1

38

APPENDIX D. API ENDPOINTS 39

Method Endpoint Description
POST /api/courses Creates a new course
GET /api/course/course-id Gets the course with the given id
GET /api/course/course-id/users Gets the users enrolled in the course with

the given id
GET /api/user_courses Gets the courses enrolled by the current

user
PUT /api/course/course-id Updates the course with the given id
DELETE /api/course/course-id Deletes the course with the given id
POST /api/course/course-id/thumbnail Creates a new thumbnail for the course

with the given id
GET /api/course/course-

id/thumbnail?user_token=user-
token

Gets the thumbnail for the course with the
given id and user token

DELETE /api/course/course-id/thumbnail Deletes the thumbnail for the course with
the given id

POST /api/course/course-id/files Creates a new file for the course with the
given id

GET /api/course/course-id/files Gets all the files for the course with the
given id

GET /api/course/course-
id/files?file_id=file-id

Gets the file with the given id assigned to
the course with the given id

PUT /api/course/course-
id/files?file_id=file-id

Updates the file with the given id assigned
to the course with the given id

DELETE /api/course/course-
id/files?file_id=file-id

Deletes the file with the given id assigned
to the course with the given id

POST /api/course/course-id/users Adds users to the course with the given id
DELETE /api/course/course-id/users Removes users from the course with the

given id
POST /api/course/course-id/questions Creates a new question for the course with

the given id
GET /api/course/course-id/questions Gets all the questions for the course with

the given id
DELETE /api/course/course-id/questions Deletes all the questions for the course

with the given id
POST /api/course/course-

id/questions/question-id/answers
Creates a new answer for the question with
the given id assigned to the course with the
given id

DELETE /api/course/course-
id/questions/question-id/answers

Deletes the answer with the given id as-
signed to the question with the given id
assigned to the course with the given id

Table D.2: API endpoints part 2

APPENDIX D. API ENDPOINTS 40

Method Endpoint Description
POST /api/environment/school Create a new school
GET /api/environment/school?id=school-

id
Get a school

PUT /api/environment/school?id=school-
id

Update a school

DELETE /api/environment/school?id=school-
id

Delete a school

POST /api/environment/country Create a new country
GET /api/environment/country

?id=country-id
Get a country

PUT /api/environment/country
?id=country-id

Update a country

DELETE /api/environment/country
?id=country-id

Delete a country

POST /api/environment/holidays
?school_id=school-id

Create a new holiday

GET /api/environment/holidays
?school_id=school-id

Get all holidays

DELETE /environment/holidays
?school_id=school-id&date=date

Delete a holiday

POST /api/tags Create a new tag
GET /api/tags Get all tags
GET /api/tags/tag-id Get a tag by id
PUT /api/tags/tag-id Update a tag by id
DELETE /api/tags/tag-id Delete a tag by id
POST /api/tags/tag-

id/add_user?user_id=user-id
Add a user to a tag

GET /api/tags/tag-id/users Get all users by tag
GET /api/tags/personal_tags Get all tags by user
DELETE /api/tags/tag-

id/remove_user?user_id=user-id
Remove a user from a tag

POST /api/todos Create a new todo
GET /api/todos Get all todos
GET /api/todos/todo-id Get a todo
PUT /api/todos/todo-id Update a todo
DELETE /api/todos/todo-id Delete a todo
POST /api/users Create a new user
GET /api/users Get all users
GET /api/users/user-id Get a user
PUT /api/users/user-id Update a user
DELETE /api/users/user-id Delete a user
POST /api/login Log in
POST /api/logout Log out

Table D.3: API endpoints part 3

