
COMP3011 Web Services and Web Data

Coursework 2

Bogdan-Alexandru Ciurea
sc20bac - 201438333



Introduction

The purpose of this document is to describe the high-level design of the application developed
for the second coursework for (COMP3011) Web Services and Web Data, that being the creation
of a flight aggregation software in Python.

This software was individually developed but is connected to other services deployed to
PythonAnywhere by the team’s (FLOC: Flight Listing Operational Consortium) members,
therefore, communication, synchronisation, and standardisation between team members were
a priority during the development of the services. These services can be of 5 different types:
Airline companies, Car rental companies, Local guides, Accommodation services, and Payment
providers.

This document will tackle the features that the software will have as well as the overall
architecture of the software, thus providing a comprehensive insight into the code, before reading
it.

Available commands

Although this implementation does not follow the implementation in the first coursework, it
manages to utilise all the endpoints that are provided by the rest of the members. This being
said, the resulted available command of the this implementation of the flight aggregator are going
to be the following:

command description
help print this help message
show_bookings show specific bookings
get_all_flights list all available flights
get_flights list flights with given parameters
book_flight book a flight
cancel_booking cancel a flight booking
search_car search a cars
book_car book a car
search_accommodation search accommodations
book_accommodation book accommodation
search_tours search for tours
book_tour book a tour
search_attractions search for attractions
book_attraction book for attraction
exit exit the program

Table 1: List of possible commands

1



Code

This chapter will briefly explain the development process of the application and the architectural
decisions of the code as well as design decisions that have been made along the way.

Environment

The environment that was used in the development process was on an ARM architecture running
Python 3.10.1 and a Python virtual environment was used to ensure that the code can be as
portable as possible.

Furthermore, a list of libraries that have been used in the development of this application
to provide better CLI display options but also for features such as encryption or environment
variables (we will discuss why they are necessary for a future chapter). The used libraries
are rich (12.6.0), python-dotenv (0.20.0), requests (2.26.0), asyncio (3.4.3) and
cryptography (40.0.2); this list can also be found in the requests.txt file inside the submis-
sion and can be used to install all of the required dependencies.

Before ruining the software it would be best practice to ensure that all the required files are
present in the environment to ensure that the software will be working as expected, therefore
the root folder should contain 10 files, those being two folders (api and command_parsers fold-
ers), one .env file, three python scripts (card_manger.py, main.py) and card_manager.py,
cards.txt, bookings.txt, requirements.txt. The last file that is present is a Postman
export that was used during development for testing the colleagues’ endpoints and is named
postman_export.zip.

Code architecture

The architecture of the code was important during the development process because, as so many
services and endpoints had to be linked, it was we had to ensure that we can debug, change
or maintain the code as easily as possible, therefore the decided approach was to use as many
classes as possible, each one taking care of a specific service.

The architecture of this software can be split into 3 main parts:

1. API managers: Located in the api folder, these are the classes that will have a function for
all of the endpoints of a service and will manage the request parsing or creation to return
some python data classes that will contain the correlated information. In diagram 1,
they are located on the 2nd row (from top to bottom and including the APIs).

2. Command parsers: Located in the command_parsers folder, these are the classes that will
read the information from the CLI and will print any errors to the screen. They are located
in the 3rd row plus the card_manager and booking_manager.py classes.

3. Main: The last class (located in main.py) will be responsible for connecting the command
parses but also managing the main loop.

2



3

Figure 1: Architecture Diagram

Connection with the other services

To communicate with the other services constant communication and debugging were required
between the team members. After this process, the software was successfully developed and
could communicate with all services. One problem during the development and testing part was
that Python was very sensitive if a JSON request did not have a specific key and it made the
program crash, therefore, the code as, in all places that require request parsing, a try-except
statement that will ensure that the code will not break but return a string that can be printed
to the screen (this message can occur any time so if the console is showing an error but does not
allow the user to input data, it is better to wait for it to finish loading).

Another way that testing was done was through Postman. Each endpoint was mapped in
this software and they have been uploaded with the deliverable software to provide a backup for
understanding the colleagues’ work.



Results

Figure 2: Resulted CLI output

Coming back to the used libraries that we
mentioned in the previous chapter, because of
the usage of the rich library, the resulted CLI
output is beautifully arranged and colourised,
but is also allows us to give the user default in-
put (like 2 when selecting the airline) but also
input that, if it not in an array of accepted
strings (can easily be seen in the luggage in-
put), it will not allow the user to continue.
These arrays or checks are done for every in-
put but it wouldn’t be a good idea to display
40 different seats for example.

Two other features are the saved cards
and the saved bookings. The first feature
is done by the cards_manager and will store
multiple cards in a local file; obviously, the
card’s details will be encrypted (using the
cryptography library). The second one will
be similar in implementation to the cards man-
ager and will take care of storing and reading
multiple bookings. One important aspect of
the booking manager is that it is suppose to
replace a functionality that is not supported
by any of the services, therefore the software,
although not the best option, will store them
in a local file.

In addition to this, we will have to keep in
mind that the software will have some weak
points, especially when waiting for the re-
quest’s answers to come back from the other
services. This can be instantly seen when launching the application as multiple responses will
be awaited in order to make the application more immersive.

Changes from initial document

In the original document, the implementation asked for the aggregator to provide users with the
option of selecting additional services at the destination’s location. In this implementation, that
feature was dropped because the databases were not large enough, therefore not guaranteeing
the fact that we will have a service at that location.

4


